Your browser does not support JavaScript! Skip to main content
Free 30-day trial DO-178C Handbook RapiCoupling Preview DO-178C Multicore Training Multicore Resources
Rapita Systems
 

Industry leading verification tools

Rapita Verification Suite (RVS)

RapiTest - Functional testing for critical software RapiCover - Low-overhead coverage analysis for critical software RapiTime - In-depth execution time analysis for critical software RapiTask - RTOS scheduling visualization RapiCoverZero - Zero-footprint coverage analysis RapitimeZero - Zero-footprint timing analysis RapiTaskZero - Zero-footprint event-level scheduling analysis RVS Qualification Kits - Tool qualification for DO-178 B/C and ISO 26262 projects RapiCoupling - DCCC analysis

Multicore Verification

MACH178 - Multicore Avionics Certification for High-integrity DO-178C projects MACH178 Foundations - Lay the groundwork for A(M)C 20-193 compliance Multicore Timing Solution - Solving the challenges of multicore timing analysis RapiDaemon - Analyze interference in multicore systems

Other

RTBx - The ultimate data logging solution Sim68020 - Simulation for the Motorola 68020 microprocessor

RVS Software Policy

Software licensing Product life cycle policy RVS Assurance issue policy RVS development roadmap

Industry leading verification services

Engineering Services

V&V Services Data Coupling & Control Coupling Object code verification Qualification Training Consultancy Tool Integration Support

Latest from Rapita HQ

Latest news

Rapita partners with Asterios Technologies to deliver solutions in multicore certification
SAIF Autonomy to use RVS to verify their groundbreaking AI platform
RVS 3.22 Launched
Hybrid electric pioneers, Ascendance, join Rapita Systems Trailblazer Partnership Program
View News

Latest from the Rapita blog

How emulation can reduce avionics verification costs: Sim68020
Multicore timing analysis: to instrument or not to instrument
How to certify multicore processors - what is everyone asking?
Data Coupling Basics in DO-178C
View Blog

Latest discovery pages

Military Drone Certifying Unmanned Aircraft Systems
control_tower DO-278A Guidance: Introduction to RTCA DO-278 approval
Picture of a car ISO 26262
DCCC Image Data Coupling & Control Coupling
View Discovery pages

Upcoming events

IEEE SMC-IT/SCC 2025
2025-07-28
DASC 2025
2025-09-14
DO-178C Multicore In-person Training (Fort Worth, TX)
2025-10-01
DO-178C Multicore In-person Training (Toulouse)
2025-11-04
View Events

Technical resources for industry professionals

Latest White papers

Mitigation of interference in multicore processors for A(M)C 20-193
Sysgo WP
Developing DO-178C and ED-12C-certifiable multicore software
DO178C Handbook
Efficient Verification Through the DO-178C Life Cycle
View White papers

Latest Videos

How to make AI safe in autonomous systems with SAIF
Rapita Systems - Safety Through Quality
Simulation for the Motorola 68020 microprocessor with Sim68020
AI-driven Requirements Traceability for Faster Testing and Certification
View Videos

Latest Case studies

GMV case study front cover
GMV verify ISO26262 automotive software with RVS
Kappa: Verifying Airborne Video Systems for Air-to-Air Refueling using RVS
Supporting DanLaw with unit testing and code coverage analysis for automotive software
View Case studies

Other Resources

 Webinars

 Brochures

 Product briefs

 Technical notes

 Research projects

 Multicore resources

Discover Rapita

Who we are

The company menu

  • About us
  • Customers
  • Distributors
  • Locations
  • Partners
  • Research projects
  • Contact us
  • Careers
  • Working at Rapita

Industries

  Civil Aviation (DO-178C)   Automotive (ISO 26262)   Military & Defense   Space

US office

+1 248-957-9801
info@rapitasystems.com Rapita Systems, Inc., 41131 Vincenti Ct., Novi, MI 48375, USA

UK office

+44 (0)1904 413945
info@rapitasystems.com Rapita Systems Ltd., Atlas House, Osbaldwick Link Road, York, YO10 3JB, UK

Spain office

+34 93 351 02 05
info@rapitasystems.com Rapita Systems S.L., Parc UPC, Edificio K2M, c/ Jordi Girona, 1-3, Barcelona 08034, Spain
Back to Top Contact Us

How do I set up an MPC5xx IO port to collect data?

2012-11-12

At Rapita, our main interest in writing to output ports of microcontrollers is to provide an efficient means of measuring code execution times or code coverage (via our RapiTime or RapiCover tools – both part of RVS). Typically, we’d have some way of logging the values written to the output port, for example the RTBx or a logic analyzer.

In common with many microcontrollers, the Freescale MPC5xx series microcontroller has a number of ports that can be configured for general purpose digital input or output, or other specific purposes. Possibilities for output ports include:

  • Queued Analog to Digital Converter Module (QADCM)
  • Queued Serial Multi Channel Module (QSMCM)
  • Modular IO System (MIOS) Parallel Port IO Submodule (MPIOSM)

Before data can be output through any port it is first necessary to:

  1. initialize the output pins as general purpose IO
  2. configure the port as output rather than input
  3. set the pin characteristics to match the signal being generated

Each IO port will have a number of associated registers that control the operation of that port that need to be set appropriately.

Within RVS, we normally initialize ports within the RVS_Init() routine, which must be called before any instrumentation is executed. To illustrate the configuration of one of the ports, we show an example RVS_Init() routine.

Most compilers are supplied with address definitions that allow register names to be used directly in the source code, however check your compiler and CPU documentation to be sure.

Here we consider how an instrumentation library can be written to output values through the QADCM. There are two QADC modules, each of which contain a pair of 8 bit ports that can be configured for output. The example RVS_Init() below shows how to initialise port A on QADC module A for output:

void RVS_Init()
{
   UMCR = 0;              /* high bus frequency       */
   PDMCR = 0x80000000uL;  /* normal slew rate for QAD */
   PORTQA_A = 0;          /* Initialise pins low      */
   DDRQA_A = 0xFF;        /* Set as output            */
}

The registers used are as follows:

  • UMCR UIMB Module Configuration Register. Used to configure the U-BUS to IMB3 interface to run at full speed.
  • PDMCR Pad Module Configuration Register. Used to set normal rather than slow slew rate.
  • PORTQA_A Port Data Register for port A on QADC module A.
  • DDRQA_A Port Data Direction Register for port A on QADC module A.

Once the port has been initialised, values can be written via the Port Data Register. For example, in RVS, instrumentation point IDs can be written by including the following definition in rvs_ipoint.h:

#define RVS_I( I ) ((void)(PORTQA_A = (I)))

DO-178C webinars

DO178C webinars

White papers

Mitigation of interference in multicore processors for A(M)C 20-193
Sysgo WP Developing DO-178C and ED-12C-certifiable multicore software
DO178C Handbook Efficient Verification Through the DO-178C Life Cycle
A Commercial Solution for Safety-Critical Multicore Timing Analysis
  • Solutions
    • Rapita Verification Suite
    • RapiTest
    • RapiCover
    • RapiTime
    • RapiTask
    • MACH178

    • Verification and Validation Services
    • Qualification
    • Training
    • Integration
  • Latest
  • Latest menu

    • News
    • Blog
    • Events
    • Videos
  • Downloads
  • Downloads menu

    • Brochures
    • Webinars
    • White Papers
    • Case Studies
    • Product briefs
    • Technical notes
    • Software licensing
  • Company
  • Company menu

    • About Rapita
    • Careers
    • Customers
    • Distributors
    • Industries
    • Locations
    • Partners
    • Research projects
    • Contact
  • Discover
    • Multicore Timing Analysis
    • Embedded Software Testing Tools
    • Worst Case Execution Time
    • WCET Tools
    • Code coverage for Ada, C & C++
    • MC/DC Coverage
    • Verifying additional code for DO-178C
    • Timing analysis (WCET) & Code coverage for MATLAB® Simulink®
    • Data Coupling & Control Coupling
    • Aerospace Software Testing
    • DO-178C
    • Meeting DO-178C Objectives
    • AC 20-193 and AMC 20-193
    • Meeting A(M)C 20-193 Objectives
    • Certifying eVTOL
    • Cerifying UAS

All materials © Rapita Systems Ltd. 2025 - All rights reserved | Privacy information | Trademark notice Subscribe to our newsletter