Your browser does not support JavaScript! Skip to main content
Free 30-day trial DO-178C Handbook RapiCoupling Preview DO-178C Multicore Training Multicore Resources
Rapita Systems
 

Industry leading verification tools

Rapita Verification Suite (RVS)

RapiTest - Functional testing for critical software RapiCover - Low-overhead coverage analysis for critical software RapiTime - In-depth execution time analysis for critical software RapiTask - RTOS scheduling visualization RapiCoverZero - Zero-footprint coverage analysis RapitimeZero - Zero-footprint timing analysis RapiTaskZero - Zero-footprint event-level scheduling analysis RVS Qualification Kits - Tool qualification for DO-178 B/C and ISO 26262 projects RapiCouplingPreview - DCCC analysis

Multicore Verification

MACH178 - Multicore Avionics Certification for High-integrity DO-178C projects MACH178 Foundations - Lay the groundwork for A(M)C 20-193 compliance Multicore Timing Solution - Solving the challenges of multicore timing analysis RapiDaemon - Analyze interference in multicore systems

Other

RTBx - The ultimate data logging solution Sim68020 - Simulation for the Motorola 68020 microprocessor

RVS Software Policy

Software licensing Product life cycle policy RVS Assurance issue policy RVS development roadmap

Industry leading verification services

Engineering Services

V&V Services Data Coupling & Control Coupling Object code verification Qualification Training Consultancy Tool Integration Support

Latest from Rapita HQ

Latest news

Rapita partners with Asterios Technologies to deliver solutions in multicore certification
SAIF Autonomy to use RVS to verify their groundbreaking AI platform
RVS 3.22 Launched
Hybrid electric pioneers, Ascendance, join Rapita Systems Trailblazer Partnership Program
View News

Latest from the Rapita blog

How emulation can reduce avionics verification costs: Sim68020
Multicore timing analysis: to instrument or not to instrument
How to certify multicore processors - what is everyone asking?
Data Coupling Basics in DO-178C
View Blog

Latest discovery pages

Military Drone Certifying Unmanned Aircraft Systems
control_tower DO-278A Guidance: Introduction to RTCA DO-278 approval
Picture of a car ISO 26262
DCCC Image Data Coupling & Control Coupling
View Discovery pages

Upcoming events

IEEE SMC-IT/SCC 2025
2025-07-28
DASC 2025
2025-09-14
DO-178C Multicore In-person Training (Fort Worth, TX)
2025-10-01
DO-178C Multicore In-person Training (Toulouse)
2025-11-04
View Events

Technical resources for industry professionals

Latest White papers

Mitigation of interference in multicore processors for A(M)C 20-193
Sysgo WP
Developing DO-178C and ED-12C-certifiable multicore software
DO178C Handbook
Efficient Verification Through the DO-178C Life Cycle
View White papers

Latest Videos

How to make AI safe in autonomous systems with SAIF
Rapita Systems - Safety Through Quality
Simulation for the Motorola 68020 microprocessor with Sim68020
AI-driven Requirements Traceability for Faster Testing and Certification
View Videos

Latest Case studies

GMV case study front cover
GMV verify ISO26262 automotive software with RVS
Kappa: Verifying Airborne Video Systems for Air-to-Air Refueling using RVS
Supporting DanLaw with unit testing and code coverage analysis for automotive software
View Case studies

Other Resources

 Webinars

 Brochures

 Product briefs

 Technical notes

 Research projects

 Multicore resources

Discover Rapita

Who we are

The company menu

  • About us
  • Customers
  • Distributors
  • Locations
  • Partners
  • Research projects
  • Contact us
  • Careers
  • Working at Rapita

Industries

  Civil Aviation (DO-178C)   Automotive (ISO 26262)   Military & Defense   Space

US office

+1 248-957-9801
info@rapitasystems.com Rapita Systems, Inc., 41131 Vincenti Ct., Novi, MI 48375, USA

UK office

+44 (0)1904 413945
info@rapitasystems.com Rapita Systems Ltd., Atlas House, Osbaldwick Link Road, York, YO10 3JB, UK

Spain office

+34 93 351 02 05
info@rapitasystems.com Rapita Systems S.L., Parc UPC, Edificio K2M, c/ Jordi Girona, 1-3, Barcelona 08034, Spain
Back to Top Contact Us

DO-178C Blog Series: Introduction to DO-178C

Rapita Systems and ConsuNova Inc
2022-01-17

Introduction to DO-178C

When a system is made up of mechanical and electronic components, for which the component failure rate is known, the probability of failure for the system can be calculated and achievement of the safety target can be demonstrated. For software, complex systems or electronic hardware, system failures can be caused by design errors (sometimes known as systematic failures) as well as component failures, but there is no agreed way of calculating the failure rate of these design errors. In the aerospace domain, the agreed approach for dealing with design errors is to implement design assurance processes that have specific activities to identify and eliminate design errors throughout the software development life cycle.

DO-178 was originally developed in the late 1970s and released in 1982 to define a prescriptive set of design assurance processes for airborne software that focused on documentation and testing. In the 1980s, DO-178 was updated to DO-178A, which suggested different levels of activities dependent on the criticality of the software, but the process remained prescriptive. Released in 1992, DO-178B was a total re-write of DO-178 to move away from the prescriptive process approach and define a set of activities and associated objectives that a design assurance process must meet.

DO-178 Timeline

This update allowed flexibility in the development approaches that could be followed, but also specified fundamental attributes that a design assurance process must have, which were derived from airworthiness regulations. These included, for example, demonstrating implementation of intended function, identifying potential unintended function, and verification of an integrated build running on the target hardware.

Advances in software engineering technologies and methodologies since the release of DO-178B made consistent application of the DO-178 objectives difficult. In 2012, DO- 178C was released, which clarified details and removed inconsistencies from DO-178B, and which also includes supplements that provide guidance for design assurance when specific technologies are used, supporting a more consistent approach to compliance for software developers using these technologies. DO-178C guidance also clarified some details within DO-178B so that the original intent could be better understood and more accurately met by developers.

DO-178B introduced (and DO-178C continued to use) the fundamental concept of the Design Assurance Level (DAL), which defines the amount of rigor that should be applied by the design assurance process based on the contribution to Aircraft Safety. The higher the DAL, the more activities and objectives that must be performed and met as part of the Design Assurance process because of the more severe consequences to the aircraft should the software fail or malfunction.

The basic structure of a Design Assurance process consists of three components:

  • Planning
  • Development
  • Integral processes (Verification, Configuration Managements, Quality Assurance and Certification Liaison)

The typical process for the certification authority to determine compliance is based on four “Stage Of Involvement” (SOI) reviews. These reviews are:

  • SOI#1 or Planning Review
  • SOI#2 or Development Review
  • SOI#3 or Verification Review
  • SOI#4 or Certification review
DO-178C Stages of Involvement

Each of these reviews focuses on an aspect of the process and evaluates the evidence that demonstrates compliance incrementally throughout the development life cycle. We discuss each of the SOIs in more detail in the links above. Generally, certification authorities require that each SOI is passed before a project can proceed to the next SOI. SOIs thus mark key milestones in a DO-178C project.

Learn more about DO-178C by downloading our free 70-page DO-178C Handbook.

DO-178C webinars

DO178C webinars

White papers

Mitigation of interference in multicore processors for A(M)C 20-193
Sysgo WP Developing DO-178C and ED-12C-certifiable multicore software
DO178C Handbook Efficient Verification Through the DO-178C Life Cycle
A Commercial Solution for Safety-Critical Multicore Timing Analysis

Related blog posts

DO-178C - Stage of Involvement 4

.
2022-04-06

DO-178C - Stage of Involvement 3

.
2022-03-23

DO-178C - Stage of Involvement 2

.
2022-03-09

DO-178C - Stage of Involvement 1

.
2022-03-01

Pagination

  • Current page 1
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Next page Next ›
  • Last page Last »
  • Solutions
    • Rapita Verification Suite
    • RapiTest
    • RapiCover
    • RapiTime
    • RapiTask
    • MACH178

    • Verification and Validation Services
    • Qualification
    • Training
    • Integration
  • Latest
  • Latest menu

    • News
    • Blog
    • Events
    • Videos
  • Downloads
  • Downloads menu

    • Brochures
    • Webinars
    • White Papers
    • Case Studies
    • Product briefs
    • Technical notes
    • Software licensing
  • Company
  • Company menu

    • About Rapita
    • Careers
    • Customers
    • Distributors
    • Industries
    • Locations
    • Partners
    • Research projects
    • Contact
  • Discover
    • Multicore Timing Analysis
    • Embedded Software Testing Tools
    • Worst Case Execution Time
    • WCET Tools
    • Code coverage for Ada, C & C++
    • MC/DC Coverage
    • Verifying additional code for DO-178C
    • Timing analysis (WCET) & Code coverage for MATLAB® Simulink®
    • Data Coupling & Control Coupling
    • Aerospace Software Testing
    • DO-178C
    • Meeting DO-178C Objectives
    • AC 20-193 and AMC 20-193
    • Meeting A(M)C 20-193 Objectives
    • Certifying eVTOL
    • Certifying UAS

All materials © Rapita Systems Ltd. 2025 - All rights reserved | Privacy information | Trademark notice Subscribe to our newsletter