Your browser does not support JavaScript! Skip to main content
Free 30-day trial DO-178C Handbook RapiCoupling Preview DO-178C Multicore Training Multicore Resources
Rapita Systems
 

Industry leading verification tools & services

Rapita Verification Suite (RVS)

  RapiTest - Unit/system testing  RapiCover - Structural coverage analysis  RapiTime - Timing analysis (inc. WCET)  RapiTask - Scheduling visualization  RapiCoverZero - Zero footprint coverage analysis  RapiTimeZero - Zero footprint timing analysis  RapiTaskZero - Zero footprint scheduling analysis  RapiCouplingPreview - DCCC analysis

Multicore Verification

  MACH178  MACH178 Foundations  Multicore Timing Solution  RapiDaemons

Engineering Services

  V&V Services  Data Coupling & Control Coupling  Object code verification  Qualification  Training  Consultancy  Tool Integration  Support

Industries

  Civil Aviation (DO-178C)   Automotive (ISO 26262)   Military & Defense   Space

Other

RTBx Mx-Suite Software licensing Product life cycle policy RVS Assurance issue policy RVS development roadmap

Latest from Rapita HQ

Latest news

SAIF Autonomy to use RVS to verify their groundbreaking AI platform
RVS 3.22 Launched
Hybrid electric pioneers, Ascendance, join Rapita Systems Trailblazer Partnership Program
Magline joins Rapita Trailblazer Partnership Program to support DO-178 Certification
View News

Latest from the Rapita blog

How to certify multicore processors - what is everyone asking?
Data Coupling Basics in DO-178C
Control Coupling Basics in DO-178C
Components in Data Coupling and Control Coupling
View Blog

Latest discovery pages

control_tower DO-278A Guidance: Introduction to RTCA DO-278 approval
Picture of a car ISO 26262
DCCC Image Data Coupling & Control Coupling
Additional Coe verification thumb Verifying additional code for DO-178C
View Discovery pages

Upcoming events

XPONENTIAL 2025
2025-05-19
Avionics and Testing Innovations 2025
2025-05-20
DASC 2025
2025-09-14
DO-178C Multicore In-person Training (Fort Worth, TX)
2025-10-01
View Events

Technical resources for industry professionals

Latest White papers

Mitigation of interference in multicore processors for A(M)C 20-193
Sysgo WP
Developing DO-178C and ED-12C-certifiable multicore software
DO178C Handbook
Efficient Verification Through the DO-178C Life Cycle
View White papers

Latest Videos

Rapita Systems - Safety Through Quality
Simulation for the Motorola 68020 microprocessor with Sim68020
AI-driven Requirements Traceability for Faster Testing and Certification
Multicore software verification with RVS 3.22
View Videos

Latest Case studies

GMV case study front cover
GMV verify ISO26262 automotive software with RVS
Kappa: Verifying Airborne Video Systems for Air-to-Air Refueling using RVS
Supporting DanLaw with unit testing and code coverage analysis for automotive software
View Case studies

Other Resources

 Webinars

 Brochures

 Product briefs

 Technical notes

 Research projects

 Multicore resources

Discover Rapita

Who we are

The company menu

  • About us
  • Customers
  • Distributors
  • Locations
  • Partners
  • Research projects
  • Contact us

US office

+1 248-957-9801
info@rapitasystems.com
Rapita Systems, Inc.
41131 Vincenti Ct.
Novi
MI 48375
USA

UK office

+44 (0)1904 413945
info@rapitasystems.com
Rapita Systems Ltd.
Atlas House
Osbaldwick Link Road
York, YO10 3JB
UK

Spain office

+34 93 351 02 05
info@rapitasystems.com
Rapita Systems S.L.
Parc UPC, Edificio K2M
c/ Jordi Girona, 1-3
Barcelona 08034
Spain

Working at Rapita

Careers

Careers menu

  • Current opportunities & application process
  • Working at Rapita
Back to Top Contact Us

Multicore Timing Analysis for DO-178C

Breadcrumb

  1. Home
7011B000002WGUeQAO
White paper
Front cover of Multicore Timing Analysis for DO-178C whitepaper

Download now

 
When you contact us, we will process your personal data in accordance with our data protection policy, please see our Customer Privacy Information for more information.

The multicore revolution and DO-178C

Since its inception in the 1980’s, the guidance offered by DO-178 and its successors has served the avionics industry well. DO-178B, published in 1992, and more recently DO-178C (2011), have kept pace with changes in avionics hardware by ensuring that their guidelines remain generic and relevant regardless of software architecture, programming language, etc.

Since DO-178 was first published, the embedded computing world has seen many significant changes, for example Moore’s Law having driven advances such that the computing power of modern cellphones now exceeds that of the Apollo 11 lunar lander many times over. One of the most significant changes is the innovation and use of multicore processors. With a higher density of silicon, these systems offer increased performance per unit area, which is critical to meet the needs of modern avionics systems. Their use comes at a price, as unlike single core systems, they offer neither a deterministic environment nor predictable software execution times.

In response to the increased use of multicore processors, the Certification Authorities Software Team (CAST) published Position Paper CAST-32A named ‘Multi-core Processors’ (often referred to as just ‘CAST-32A’). This paper identified topics that could impact the safety, performance and integrity of airborne software systems executing on multicore processors and provides objectives intended to guide the production of safe multicore avionics systems. This guidance has been superseded by official guidance – for DO-178C projects certified by the FAA in AC 20-193, and for ED-12C project certified by EASA in AMC 20-193.

Objective MCP_Software_1 in AC 20-193, AMC 20-193 and CAST-32A requires that evidence is produced to demonstrate that all hosted software components function correctly and have sufficient time to complete their execution when operating in their multicore environment. This white paper outlines the challenges in demonstrating this and presents a practical solution to do so, which is compliant with DO-178C, AC 20-193, AMC 20-193 and CAST-32A.

Many OEMs are concerned about the long-term component availability of single core processors. This has led some to adopt multicore processors but disable all but one core, as they can’t economically verify the system when all cores are enabled.

This isn’t a good long-term solution and doesn’t take advantage of the performance improvements offered by using multicore hardware to its full potential. The challenges of using multicore processors in the critical embedded domain should be tackled head on, and the potential of these processors embraced.

If you're interested in multicore timing analysis for DO-178C, why not register for one of our upcoming CAST-32A Training Courses?

Other white papers

DO178C Handbook
Sysgo WP
  • Solutions
    • Rapita Verification Suite
    • RapiTest
    • RapiCover
    • RapiTime
    • RapiTask
    • MACH178

    • Verification and Validation Services
    • Qualification
    • Training
    • Integration
  • Latest
  • Latest menu

    • News
    • Blog
    • Events
    • Videos
  • Downloads
  • Downloads menu

    • Brochures
    • Webinars
    • White Papers
    • Case Studies
    • Product briefs
    • Technical notes
    • Software licensing
  • Company
  • Company menu

    • About Rapita
    • Careers
    • Customers
    • Distributors
    • Industries
    • Locations
    • Partners
    • Research projects
    • Contact
  • Discover
    • Multicore Timing Analysis
    • Embedded Software Testing Tools
    • Worst Case Execution Time
    • WCET Tools
    • Code coverage for Ada, C & C++
    • MC/DC Coverage
    • Verifying additional code for DO-178C
    • Timing analysis (WCET) & Code coverage for MATLAB® Simulink®
    • Data Coupling & Control Coupling
    • Aerospace Software Testing
    • Automotive Software Testing
    • Certifying eVTOL
    • DO-178C
    • AC 20-193 and AMC 20-193
    • ISO 26262
    • What is CAST-32A?

All materials © Rapita Systems Ltd. 2025 - All rights reserved | Privacy information | Trademark notice Subscribe to our newsletter